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Classical Nucleation Theory Mitosis Method

Theory Overview Aim: Calculate the work required to reversibly separate a droplet into two equal sized
Classical Nucleation Theory (CNT) partitions the free energy of nucleus formation into subclusters. Use §-CNT framework to calculate the Tolman length.
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discrepancy between CNT predicted and experimental rates. While other sources of error
exist, in this study we focus on the errors associated with a size independent y. cluster 1 cluster 2 >4
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To improve predictions of nucleation kinetics, a size dependent surface free energy should be
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Tolman Equation We investigated nanodroplet radii ranging from 0.7 to 1.6 nm.
The surface free energy of a liquid droplet in equilibrium with its
vapor depends on the droplet curvature and the Tolman length, 6. . AF.... ) R I
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Incorporating the Tolman equation into CNT leads to first-order expressions for the critical size nucleation kinetics. 2/Ry (nm™") Siaet";‘e‘:gg‘:s
and barrier height. 80 ' 1 To compare with experiments, we assume our calculated § applies to water. At a errors.
§==0.5A supersaturation of 4, we obtain good agreement with experiment.
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0 > 10 15 CNT rate predictions often differ from experimental measurements by orders of magnitude,
R/A which may be a result of assuming a size independent y.

Accounting for a size-dependent surface free energy can lead to a significant change in the
barrier height. An accurate calculation of the Tolman length can lead to more accurate
predictions of nucleation kinetics.

6-CNT accounts for a size dependent surface free energy via the Tolman equation.
Reasonable estimates of 6 can significantly alter predicted nucleation kinetics.

We employed the mitosis method with a §-CNT framework and calculated the Tolman length to
be —0.56 + 0.09 A. This indicates that the surface free energy for nanometer-size water
droplets is approximately 5-11 mJ/m? higher than the planar surface free energy.

Refe re n CeS Our calculated Tolman length leads to good agreement between independently measured
nucleation kinetics and §-CNT predictions.
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